Role of storms and forestry practices in sedimentation in an Oregon Coast Range Lake

Kris Richardson1, Jeff Hatten2,
Rob Wheatcroft1

1College of Earth, Ocean, and Atmospheric Sciences
2Forest Engineering and Resource Management

Oregon State University

Thanks to Chuck Nittrouer, UW; Forest Soils Lab Group, OSU; Ken Richardson; Kelly Rose, NETL-DOE; Coos Bay District BLM - Oregon
Outline

• Background – lakes, climate, harvest
• Research questions
• Hypotheses
• Study site characteristics
• Approach
• Preliminary results
• Conclusions and future work
Start of WWII - 1939
Background

Timber harvest – Douglas Co., Oregon

Wheatcroft et al. 2013
Background

Timber harvest – Douglas Co., Oregon

1972: Oregon Forest Practices Act (OFPA)

Wheatcroft et al. 2013
Background

Wheatcroft et al. 2013

Source: Watershed Processes Group, OSU
Background

Wheatcroft et al. 2013

Source: Watershed Processes Group, OSU

Board Feet Harvested x 10^9

Cool-phase PDO

OFPA

Wheatcroft et al. 2013
1972: OFPA
From Poor to Best Management Practices (BMPs):
• Riparian buffers
• Better road construction
• Smaller parcels
• Lower-impact harvesting
• Slope & stability

Source: Alsea Watershed Study
<table>
<thead>
<tr>
<th>Research Questions for current work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the impact of historical (pre-OFPA) & contemporary (post-OFPA) harvesting practices on lake sedimentation rate?</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>Can we detect forestry practice changes in the lake sediment and if so, what is the effect?</td>
</tr>
</tbody>
</table>
Hypothesis

Sediment layer thickness decreases after OFPA

- less impact to land
- better buffers

Pre-OFPA

OFPA(1972)

Post-OFPA
Hypothesis

Sediment thickness post-OFPA:

Low precip:
 less sediment thickness
Extreme precip:
 BMPs break down
Study site

Loon Lake Catchment Study site

Source: PRISM

<table>
<thead>
<tr>
<th>Loon Lake Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment area</td>
<td>230 km²</td>
</tr>
<tr>
<td>Lake area</td>
<td>1.19 km²</td>
</tr>
<tr>
<td>Lake depth, max</td>
<td>31 m</td>
</tr>
<tr>
<td>Lake depth, avg</td>
<td>16 m</td>
</tr>
<tr>
<td>Land ownership</td>
<td>Private – 74%</td>
</tr>
<tr>
<td>Geology of catchment</td>
<td>Tyee sandstone</td>
</tr>
<tr>
<td>Precipitation range, annual</td>
<td>1700-2400 mm</td>
</tr>
</tbody>
</table>

Cohen et al. 2002

Loon Lake

Source: PRISM

Cohen et al. 2002

Harvest 1972-1995

Elevation

- Harvest 1972-1995
- 795 m
- 120 m
Study site

<table>
<thead>
<tr>
<th>Loon Lake Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment area</td>
<td>230 km²</td>
</tr>
<tr>
<td>Lake area</td>
<td>1.19 km²</td>
</tr>
<tr>
<td>Lake depth, max</td>
<td>31 m</td>
</tr>
<tr>
<td>Lake depth, avg</td>
<td>16 m</td>
</tr>
<tr>
<td>Land ownership</td>
<td>Private – 74%</td>
</tr>
<tr>
<td>Geology of catchment</td>
<td>Tyee sandstone</td>
</tr>
<tr>
<td>Precipitation range, annual</td>
<td>1700-2400 mm</td>
</tr>
</tbody>
</table>

Study site

<table>
<thead>
<tr>
<th>Loon Lake Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment area</td>
<td>230 km²</td>
</tr>
<tr>
<td>Lake area</td>
<td>1.19 km²</td>
</tr>
<tr>
<td>Lake depth, max</td>
<td>31 m</td>
</tr>
<tr>
<td>Lake depth, avg</td>
<td>16 m</td>
</tr>
<tr>
<td>Land ownership</td>
<td>Private – 74%</td>
</tr>
<tr>
<td>Geology of catchment</td>
<td>Tyee sandstone</td>
</tr>
<tr>
<td>Precipitation range, annual</td>
<td>1700-2400 mm</td>
</tr>
</tbody>
</table>

Approach
• Coring
• Chronology
 – ^{137}Cs peak 1963
 – Annual layers (varve counting)
• Layer thickness
• Precipitation/discharge
 - nearby gaging station
• Particle size analysis
• Magnetic Susceptibility
Preliminary results:

Sediment thickness

<table>
<thead>
<tr>
<th>Lamination thickness (cm)</th>
<th>Pre-OFPA n=35</th>
<th>Post-OFPA n=40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.01</td>
<td>0.75</td>
</tr>
<tr>
<td>Median</td>
<td>0.84</td>
<td>0.50</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.94</td>
<td>0.95</td>
</tr>
</tbody>
</table>

- Suggestive evidence of reduction in sedimentation rates
- Two sample t-test, p = 0.07
- Climate not taken into account
Preliminary results: Magnetic Susceptibility

<table>
<thead>
<tr>
<th>M.S. SI (x10^{-5})</th>
<th>Pre-OFPA n=48</th>
<th>Post-OFPA n=72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>72.7</td>
<td>70.0</td>
</tr>
<tr>
<td>S.D.</td>
<td>13.4</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Two-sample t-test
P = 0.34
Preliminary results:

Grain size

<table>
<thead>
<tr>
<th>Median grain size (μm)</th>
<th>Pre-OFPA n=30</th>
<th>Post-OFPA n=33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.28</td>
<td>6.97</td>
</tr>
<tr>
<td>S.D.</td>
<td>2.04</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Two-sample t-test, p=0.25

Overall mean = 7.12 μm
Preliminary conclusions

• Sedimentary archive is useful for identifying and investigating events in the catchment.
 - Use to identify time and distinguish large events
 - Grain size distribution is different pre- and post-OFPA, but no significant difference in means of grain size median and magnetic susceptibility

• There is suggestive evidence that overall lamination thickness declines after Oregon Forest Practices Act (OFPA).
Future Work

1. Further vet climate data
2. Examine storm layers/extreme magnitude events
3. Quantify harvest pressure in the catchment
4. Investigate sediment source/transport processes
 - C, N, stable isotopes, and biomarkers
Other preliminary results:

Sediment thickness
Questions?

Contact Kris Richardson, richakri@onid.orst.edu

Sandstone boulders viewed upstream, downstream at Loon Lake outlet falls