Environmental Effects of Wood Substitution in Commercial Construction

Arijit Sinha, WSE
Thomas Miller, CE

Kristina Milaj
WFGRS, 2015
Background

• Wood in Residential vs. Commercial
• Oregon Wood Production
• Research Gap on Literature

http://freshspace.co/blog/the-future-of-office-buildings/
Scope

• Cradle-to-Gate LCA
• Athena IE4B
• Structural System
• Six Commercial Bldgs.

http://www.coldstreamconsulting.com/building-and-infrastructure-lca
Methodology

Case Study Selection

- Location, type, area, loads
- Steel, concrete, masonry
Methodology

- Include: floors, roofs, walls, foundations & LFRS
- Non: doors, windows, partitions, stairs, entrances

Case Study Selection ➔ Assumptions

Methodology

Athena IE4B Modeling
Methodology

Case Study Selection → Assumptions → Athena IE4B Modeling → Results → Conclusions
Results

• Global Warming Potential—GWP [kg CO2 eq]
• Fossil Fuel Consumption—FFC [MJ]
• Other Impact Categories
 • Non-Renewable Energy (NRE)
 • Acidification Potential (AP)
 • Smog Potential (SP)
 • HH Particulates (HHP)
 • Ozone Depletion Potential (ODP)
 • Eutrophication Potential (EP)

• Construction Effects
Results

Global Warming Potential

Global Warming Potential [Per ft²]
Results

Fossil Fuel Consumption

Fossil Fuel Consumption [Per ft²]
Results

Impact Change - Materials

- NRE [MJ]
- GWP [kg CO2 eq]
- FFC [MJ]
- AP [kg SO2 eq]
- SP [kg O3 eq]
- HHP [kg PM2.5 eq]
- ODP [kg CFC-11 eq]
- EP [kg N eq]
Results

Materials & Construction

<table>
<thead>
<tr>
<th>SC</th>
<th>GWP [kg CO2 eq]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>0</td>
</tr>
<tr>
<td>SC2</td>
<td>1e+5</td>
</tr>
<tr>
<td>SC3</td>
<td>2e+5</td>
</tr>
<tr>
<td>SC4</td>
<td>3e+5</td>
</tr>
<tr>
<td>SC5</td>
<td>4e+5</td>
</tr>
<tr>
<td>SC6</td>
<td>5e+5</td>
</tr>
<tr>
<td>SC7</td>
<td>6e+5</td>
</tr>
</tbody>
</table>
Results

Impact Change - Construction

- HHP [kg PM2.5 eq]
- ODP [kg CFC-11 eq]
- GWP [kg CO2 eq]
- AP [kg SO2 eq]
- FFC [MJ]
- NRE [MJ]
- EP [kg N eq]
- SP [kg O3 eq]

[Graph showing changes in different environmental impact categories]
Preliminary Conclusions

• Materials:
 • **GWP~28%** Less CO2 Emission!
 • FFC~28% Less FF Consumption!

• Construction:
 • GWP~17% Less CO2 Emission!
 • FFC~30% Less FF Consumption!

• Future:
 • More case studies (≠ materials, ↑ buildings)
 • Compare results & analyze the EI4B software
 • Detailed design & LCA of 1 wood building
Thank You!

Questions 😊