Role of storms and forestry practices in sedimentation in an Oregon Coast Range Lake

Kris Richardson¹, Jeff Hatten², Rob Wheatcroft¹

¹College of Earth, Ocean, and Atmospheric Sciences ²Forest Engineering and Resource Management

Oregon State University

Thanks to Chuck Nittrouer, UW; Forest Soils Lab Group, OSU; Ken Richardson; Kelly Rose, NETL-DOE; Coos Bay District BLM - Oregon

Outline

- Background lakes, climate, harvest
- Research questions
- Hypotheses
- Study site characteristics
- Approach
- Preliminary results
- Conclusions and future work

Oregon Forest Practices Act 1972

2013

Larry

Start of WWII -1939

Wheatcroft et al. 2013

Wheatcroft et al. 2013

1972: OFPA From Poor to Best

Management

Practices (BMPs):

- Riparian buffers
- Better road construction
- Smaller parcels
- Lower-impact harvesting
- Slope & stability

BETTER

Source: Alsea Watershed Study

Research Questions for current work:

What is the impact of historical (pre-OFPA) & contemporary (post-OFPA) harvesting practices on lake sedimentation rate?

AND

Can we detect forestry practice changes in the lake sediment and if so, what is the effect?

Hypothesis

Sediment layer thickness decreases after OFPA

- less impact to land
- better buffers

OFPA(1972)

Pre-OFPA

Hypothesis

Sediment thickness post-OFPA:

Low precip: less sediment thickness Extreme precip: BMPs break down

Study site

• • •	Loon Lake Characteristics	
dv site	Catchment area	230 km ²
ay site	Lake area	1.19 km ²
an a	Lake depth, max	31 m
Umpqua River Ba	Lake depth, avg	16 m
Loon Lake Catchment	Land ownership	Private – 74%
	Geology of	Tyee sandstone
	catchment	
- Conting	Precipitation	1700-2400 mm
- tom []	range, annual	
- Ch PRIES		

Precipitation

Source: PRISM

2700 mm

800 mm

Study site

Loon Lake Characteristics

Catchment area	230 km ²
Lake area	1.19 km ²
Lake depth, max	31 m
Lake depth, avg	16 m
Land ownership	Private – 74%
Geology of	Tyee sandstone
catchment	
Precipitation	1700-2400 mm
range, annual	

Study site

Loon Lake Characteristics

Catchment area	230 km^2
Lake area	1.19 km ²
Lake depth, max	31 m
Lake depth, avg	16 m
Land ownership	Private – 74%
Geology of	Tyee sandstone
catchment	
Precipitation	1700-2400 mm
range, annual	

Approach

- Coring
- Chronology
 - ¹³⁷Cs peak 1963
 - Annual layers (varve counting)
- Layer thickness
- Precipitation/discharge
 - nearby gaging station
- Particle size analysis
- Magnetic Susceptibility

Preliminary results: Sediment thickness

Lamination thickness (cm)	Pre-OFPA n=35	Post-OFPA n=40
Mean	1.01	0.75
Median	0.84	0.50
S.D.	0.94	0.95

- Suggestive evidence of reduction in sedimentation rates
- Two sample t-test, p = 0.07
- Climate not taken into account

Preliminary results: *Magnetic Susceptibility*

M.S. SI (x10⁻⁵)	Pre-OFPA n=48	Post-OFPA n=72
Mean	72.7	70.0
S.D.	13.4	16.5

Two-sample t-test P = 0.34

Preliminary results: Grain size

Median grain size (µm)	Pre-OFPA n=30	Post-OFPA n=33		nrface (c	
Mean	7.28	6.97		S WC	Ž
S.D.	2.04	1.29		oja 40 -	
				Depth 20 -	
Two-sample p=0.25	t-test,	Overall mean =	- 7.12 μm	60 -	\sim
				70	

Preliminary conclusions

- Sedimentary archive is useful for identifying and investigating events in the catchment.
 - Use to identify time and distinguish large events
 - Grain size distribution is different pre- and post-OFPA, but no significant difference in means of grain size median and magnetic susceptibility
- There is suggestive evidence that overall lamination thickness declines after Oregon Forest Practices Act (OFPA).

Future Work

- 1. Further vet climate data
- 2. Examine storm layers/extreme magnitude events
- 3. Quantify harvest pressure in the catchment
- 4. Investigate sediment source/transport processes
 - C, N, stable isotopes, and biomarkers

Questions?

Contact Kris Richardson, richakri@onid.orst.edu

Sandstone boulders viewed upstream, downstream at Loon Lake outlet falls

