Effective adhesive systems and optimal bonding parameters for hybrid CLT

Blake Larkin

Oregon State University Materials Science and Wood Science & Engineering

Co-authors: Lech Muszynski, Arijit Sinha, Andre Barbosa, and Rakesh Gupta

Presentation Overview

- Brief intro to cross laminated timber (CLT)
- Our hypothesis
- Screening study
- Preliminary results
- Further Research

College of Engineering College of Forestry Materials Science Wood Science & Engineering

Cross Laminated Timber (CLT)

What is CLT?

htp://www.internationaltradenews.com/kin_massvhoiz_gmbh/portrait/

Layers: Typically 3, 5, or 7 Area: Up to ~ 10 X 60 ft^2

Oregon State

"KLH: Sustainability." KLH UK. Web. 30 Oct. 2014. < http://www.klhuk.com/sustainability.aspx>.

Our Hypothesis

CLT panels with hybrid layups, where layers arranged from high- and low-grade lamellas or composed of mixed species, can meet the current standard requirements for critical engineering parameters as specified in the ANSI PRG 320-2012 performance standard, and that adhesive systems alternative to polyurethane (PUR) can be successfully utilized in hybrid CLT products.

Oregon State

Hypothesis in a nutshell

- High-grade face material and low-grade core material can be used
- Mixed species can be used
- Alternative adhesives can be used

Oregon State

The screening study will be conducted on a pass-fail basis to help us select adequate species/adhesive combinations for connection tests and full-scale mechanical and physical tests.

Screening Study

- Testing 2 x 2 foot panels with 3 layers
- Bond line shear
- Delamination

Oregon State

Screening Study Test Variables Panel species combinations:

H = High Grade		Face Material	
		Lodgepole Pine (H)	Douglas-fir
L=Low Grade		(reference)	(H)
Core Material	Lodgepole Pine (Low)	4 panels	4 panels
	Douglas-fir (Low)		4 panels
	Hemlock (Low)	4 panels	4 panels
	Lodgepole Pine (High) (reference)	4 panels	

Adhesives:

Number	Adhesive Types
1	PRF
2	PUR

Clamping Pressures:

Number	Pressure (MPa) [psi]
1	0.69 [100]
2	0.40 [58.0]
3	0.10 [14.5]

- 1. Test equipment and methods
- 2. Develop testing instructions
- Compare variation of shear and delamination samples within a panel

Oregon State

Modified ASTM 1037

- Modified for 90 ° grain orientation between layers
- 2x1.5 inch bond area
- 1 inch thick layers

Focus:

- Shear strength
- Percent wood failure

Percent Wood Failure

Initial Approach

Second approach: Goal: Automatic optical assessment of the % WF

- Slow
- Challenging

1) Initial Image 2) Red Spectrum

3) Thresholding

College of Engineering College of Forestry Materials Science Wood Science & Engineering

Preliminary Shear Test Results

С

B

Delamination Test

AITC Test T110-2007: Cyclic Delamination Test

Common Modes of Sample Delamination

Mixture of Delamination and Wood Failure

Delamination Test Results

	В	А	С
1	2.81%	0.00%	3.33%
2	0.00%	0.00%	3.97%
3	0.00%	0.00%	3.16%
4	0.00%	0.41%	0.00%
5	2.73%	2.15%	0.00%
6	2.15%	0.00%	2.65%
7	0.00%	7.95%	4.14%

Key	
Pass after 1 cycle	
Pass after 2 cycles	
Failed to dry within tolerance	

A7 B7 C7 A6 B6 C6 A5 B5 C5 C4 A4 Β4 Β3 C3 A3 A2 B2 C2 C1 A1 B1

Preliminary Results

- Shear block testing equipment is satisfactory.
- Further research into drying oven needed.
- Large variation within shear blocks of single panel.
- Optical measurements offer semi-automatic method to measure WF% while reducing user input.

Future Research

- Improve manufacturing
- Check variation between panels
- Determine rolling shear values for all species
- Develop and Test PUR optical WF% assessment
- Develop automated WF% assessment
- Develop optical assessment for measuring delamination

Acknowledgments

- USDA NIFA Forest Products Research Grant Program (proj. ref. #2013-05978)
- Swanson group and Interfor for lumber
- Momentive and Henkel for adhesives
- Supervisor: Lech Muszyński
- Other team members: Arijit Sinha, Andre Barbosa, and Rakesh Gupta, and Vahid Mahdavifar
- Lab manager: Milo Clausen
- Oregon State University faculty and graduate students

