Optimal Harvesting Model for Mountain Ginseng (Panax ginseng) Production in South Korea

Hee Han¹, Woodam Chung¹, Joosang Chung²

¹Dept. of Forest Engineering, Resources, and Management, Oregon State University ²Dept. of Forest Sciences, Seoul National University

Ulaanbaatar Улаанбаатар

Mongolia

- South Korea
- Land area: 100,210 km² (40% of Oregon)
- Population: 51 million (13 times more than population in Oregon)
 Forest area: 64,134 km² (64% of the total land area)

HEILONGJIANG

Khabarovsk Хабаровск

Cultivated Mountain Ginseng in South Korea

- The most profitable forest product
- Traditional medical herb species
- Rapidly growing domestic market

Mountain Ginseng Production in South Korea

Issues in Mountain Ginseng Management in South Korea

High profitability!! But..

i) Extremely sensitive to the micro-site-specific environmentii) The extremely lower survival rate as getting older after 6

When & Where & How many?

Mainly depends on cultivator's subjective judgments

Needs a decision-making model

Objectives

Development of an optimal harvesting model for mountain ginseng production

- 1. Evaluation of site suitability
- 2. Spatial and temporal management planning for mountain ginseng production

Study Site – a forest ginseng farm

• Area: 20.5 ha

Site Analysis

<**Farm map**>

<Grid patches of a farm>

Geospatial Modeling for Site Suitability Assessment

- Aspect: 0 – 2 (using <u>linear transformation</u>)

-A' = cos (45 - A) + 1

ArcGIS 10.1

GWR Model

- GWR: Geographically Weighted Regression (Fotheringham et al. 2002)
- Use selected variables by stepwise selection (Han et al. 2012)
 - : Ca, Sand, Soil moisture, Solar, Aspect
- Bandwidth: Adaptive scheme

Coefficients	Min	Median	Max
(Intercept)	0.6515	0.6683	0.6700
Ca	-0.0007	-0.0006	-0.0005
Sand	0.0627	0.0631	0.0745
Soil moisture	0.0464	0.0471	0.0478
Solar	0.9422	0.9465	0.9509
Aspect	0.3436	0.3441	0.3445
R ² /Adjusted R ²	0.56/ 0.49		
AIC	99.1587		

[Coefficients and Model summary]

Site Suitability Analysis Using GWR

<Farm map>

<Suitability map> - Han et al. 2012

Planning Considerations

- → Site specific productivity
 - Production year (6 to 10 yrs)
 - No continuous cropping (5 year resting after harvest)

Treatment Options

('x' implies harvest)

	Year																				
Option No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	х						_	_	_	_	_	_	х						_	_	_
2	х						-	-	-	-	-	-	-	х						-	-
3	х			<u></u>			-	-	-	-	-	-	-	-	х				<u></u>		1
4	Х		, Res	$\frac{1}{1}$	riods		_	_	-	-	-	_	-	-	_	х		Res	ting per	rioas	1
5	х						_	_	-	-	_	_	-	_	_	_	х				
6	-	х						-	-	-	-	-	-	х						-	-
7	-	х						-	-	-	-	-	-	-	х						-
8	-	х						—	-	-	-	-	-	-	-	х					
9	-	х						—	-	-	-	-	-	-	-	-	х				
10	—	х						—	-	-	-	-	-	-	-	-	-	Х			
11	—	-	Х						-	-	-	-	-	-	Х						-
12	—	-	Х						-	-	-	-	-	-	-	Х					
13	-	-	Х						-	-	-	-	-	-	-	-	x				
14	-	-	х						-	-	-	-	-	-	-	-	-	х			
15	—	-	х						-	-	-	-	-	-	-	-	-	-	Х		
•																					
41		-	-	-	-	-	-	Х						-	-	-	-	-	-	Х	
42		-	-	-	-	-	-	-	Х						-	-	-	-	-	-	-
43		-	-	-	-	-	-	-	-	Х						-	-	-	-	-	-
44		-	-	-	-	-	-	-	-	-	х						-	-	-	-	-
45		-	-	-	-	-	-	-	-	-	-	х						-	—	-	-
46			-	—	-	-	-	-	Х						-	-	-	-	-	-	х
47			-	-	—	-	-	-	-	х						-	-	-	-	—	-
48			-	-	—	-	-	—	-	-	х						-	-	-	—	-
49			-	-	—	-	-	-	-	-	-	х						—	-	-	-
50			-	-	-	-	-	-	-	-	-	-	X						-	-	-

:

:

Data

Year of Production

Production cost (Han et al. 2013)

Product	Cost at age (US\$/ha)											
	1	2	3	4	5	6	7	8	9	10		
6 year-old	49,000	6,000	30,500	6,000	30,500	25,000						
7 year-old	49,000	6,000	30,500	6,000	30,500	6,000	23,500					
8 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	21,000				
9 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	5,000	18,000			
10 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	5,000	4,000	16,000		

Formulations

$$Max \ Z = \sum_{i=1}^{nog} \sum_{j=1}^{not} (r_{ij} - c_{ij}) \cdot a_i \cdot X_{ij}$$

subject to

$$\sum_{i=i}^{nog} \sum_{j=1}^{not} X_{ij} \le 1$$

$$\sum_{i=1}^{nog} \sum_{j=1}^{not} r_{ij} \cdot a_i \cdot X_{ij} - R_t = 0$$

$$\sum_{i=1}^{nog} \sum_{j=1}^{not} c_{ij} \cdot a_i \cdot X_{ij} - C_t = 0$$

 $\sum_{i=1}^{nog} \sum_{j \in Ht} a_i \cdot X_{ij} - HA_t = 0$

where,

- $X_{ij} \leftarrow \begin{bmatrix} 1 & \text{if the } j\text{-th treatment is implemented for the } i\text{-th grid} \\ 0 & \text{otherwise} \end{bmatrix}$
- r_{ij} : The present value of revenue from the *j*-th treatment at the *i*-th grid
- C_{ij} : The present value of cost from the *j*-th treatment at the *i*-th grid
- a_i : Area of the *i*-th gird
- R_t : The present value of revenue at year t
- C_t : The present value of cost at year t
- HA_t : Harvest area at year t

Subject to (cont'd),

$$\sum_{i=1}^{nog} \sum_{j \in St} a_i \cdot X_{ij} - SA_t = 0$$

$$\sum_{i=1}^{nog} \sum_{j \in Et} a_i \cdot X_{ij} - EA = 0$$

 $EA \ge \gamma \cdot TA$

 $C_t \leq BD_t$

- $NPV_t R_t + C_t = 0$
- $NPV_t (1 \alpha) \cdot NPV_{t-1} \geq 0$
- $NPV_t (1 + \beta) \cdot NPV_{t-1} \le 0$

 $0 \leq X_{ij} \leq 1$

where (cont'd),

- SA_t : Seedling area at year t
- *EA* : Cultivating area at the end of the planning
- NPV_t : The net present value at time t
- BD_t : Budget at time t
- *TA* : Total area of a ginseng farm
- α : Allowable decreasing rate
- β : Allowable increasing rate
- γ : Lower bound for cultivating area at the end of the planning
- *not* : Number of treatments
- nog: Number of grids

Management Scenarios

Sc	enario #	1	2	3	4				
O	bjective	Max. NPV							
	Non-declining Yield	±10% ±20%		$\pm 10\%$	±20%				
Constraints	Budget	≤ \$100,000	≤ \$100,000	≤ \$200,000	≤ \$200,000				
	Ending area	≥ 8 ha	≥ 8 ha	≥ 8 ha	≥ 8 ha				

Solver: CPLEX

Net Profit

Years

Scenario #	1	2	3	4
Total profit (US\$)	3,330,420	3,349,612	3,928,264	4,211,405
Annual profit (US\$/yr)	176,521	186,463	207,703	210,570

18/22

Harvesting & Seedling Area

Harvesting Area (ha)

Seedling Area (ha)

Years

Changes in Age Distribution

Scenario 11Profit fluctuation $\pm 10\%$ 2Budget \leq \$100,000

Optimal Field Design (Present)

Ē

WFGRS 2015, April 27-28, 2015

Optimal Field Design (T = 5 year)

Optimal Field Design (T = 10 year)

21/22

Optimal Field Design (T = 20 year)

21/22

Summary

Optimal solutions for maximizing the profit considering

- site suitability for production
- sustained yield of mountain ginseng
- non-continuous cropping
- Optimal spatial-and-temporal field design for
 - selecting specific locations of harvesting & seedling sites
 - managing age-distribution during production

Decision-making model for supporting the intensive mountain ginseng production

Thank You

hee.han@oregonstate.edu