Optimal Harvesting Model for Mountain Ginseng (Panax ginseng) Production in South Korea

Hee Han ${ }^{1}$, Woodam Chung ${ }^{1}$, Joosang Chung ${ }^{2}$
${ }^{1}$ Dept. of Forest Engineering, Resources, and Management, Oregon State University
${ }^{2}$ Dept. of Forest Sciences, Seoul National University
Oregon State

서 울 대 희 교

Ulaanbaatar
Улаанбаатар

:0: South Korea

- Land area: $100,210 \mathrm{~km}^{2}$ (40% of Oregon)
- Population: 51 million (13 times more than population in Oregon)

Cultivated Mountain Ginseng in South Korea

- The most profitable forest product
- Traditional medical herb species
- Rapidly growing domestic market

Mountain Ginseng Production in South Korea

Issues in Mountain Ginseng Management in South Korea

High profitability!! But..

i) Extremely sensitive to the micro-site-specific environment
ii)The extremely lower survival rate as getting older after 6

- When \& Where \& How many?
® Mainly depends on cultivator’s subjective judgments
- Needs a decision-making model

Objectives

Development of an optimal harvesting model for mountain ginseng production

1. Evaluation of site suitability
2. Spatial and temporal management planning for mountain ginseng production

Study Site - a forest ginseng farm

- Area: 20.5 ha

Site Analysis

<Farm map>

<Grid patches of a farm>

Geospatial Modeling for Site Suitability Assessment

Data collection

Site Suitability Assessment

Assess the site suitability for mountain ginseng production
-10m grid raster map at 1:5,000 scale

- Aspect: 0 - 2 (using linear transformation)

$$
-A^{\prime}=\cos (45-A)+1
$$

GWR Model

- GWR: Geographically Weighted Regression (Fotheringham et al. 2002)
- Use selected variables by stepwise selection (Han et al. 2012) : Ca, Sand, Soil moisture, Solar, Aspect
- Bandwidth: Adaptive scheme
[Coefficients and Model summary]

Coefficients	Min	Median	Max
(Intercept)	0.6515	0.6683	0.6700
Ca	-0.0007	-0.0006	-0.0005
Sand	0.0627	0.0631	0.0745
Soil moisture	0.0464	0.0471	0.0478
Solar	0.9422	0.9465	0.9509
Aspect	0.3436	0.3441	0.3445
R^{2} /Adjusted R 2	$\mathbf{0 . 5 6 / 0 . 4 9}$		
AIC	$\mathbf{9 9 . 1 5 8 7}$		

Site Suitability Analysis Using GWR

<Farm map>

<Suitability map>- Han et al. 2012

Planning Considerations

Treatment Options

(' x ' implies harvest)

41	-	-	-	-	-	-	X						-	-	-	-	-	-	X	
42	-	-	-	-	-	-	-	X						-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-	X						-	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	X						-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	X						-	-	-	-
46		-	-	-	-	-	-	X						-	-	-	-	-	-	X
47		-	-	-	-	-	-	-	X						-	-	-	-	-	-
48		-	-	-	-	-	-	-	-	X						-	-	-	-	-
49		-	-	-	-	-	-	-	-	-	X						-	-	-	-
50		-	-	-	-	-	-	-	-	-	-	X						-	-	-

Data

- Price/ Yields

Product	Price (US\$/plant)	Yield (plants/ha)	
		Sub-suitable site	
6 year-old	30	15,000	9,000
7 year-old	40	12,000	7,200
8 year-old	50	10,000	6,000
9 year-old	70	7,500	4,500
10 year-old	80	4,000	2,400

- Production cost (Han et al. 2013)

Product	Cost at age (US $\$ / \mathrm{ha})$											
	1	2	3	4	5	6	7	8	9	10		
6 year-old	49,000	6,000	30,500	6,000	30,500	25,000						
7 year-old	49,000	6,000	30,500	6,000	30,500	6,000	23,500					
8 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	21,000				
9 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	5,000	18,000			
10 year-old	49,000	6,000	30,500	6,000	30,500	6,000	5,000	5,000	4,000	16,000		

Formulations

$\operatorname{Max} Z=\sum_{i=1}^{\text {nog }} \sum_{j=1}^{\text {not }}\left(r_{i j}-c_{i j}\right) \cdot a_{i} \cdot X_{i j}$
subject to

$$
\sum_{i=i}^{n o g} \sum_{j=1}^{n o t} X_{i j} \leq 1
$$

$$
\sum_{i=1}^{n o g} \sum_{j=1}^{n o t} r_{i j} \cdot a_{i} \cdot X_{i j}-R_{t}=0
$$

$$
\sum_{i=1}^{\text {nog }} \sum_{j=1}^{\text {not }} c_{i j} \cdot a_{i} \cdot X_{i j}-C_{t}=0
$$

$$
\sum_{i=1}^{n o g} \sum_{j \in H t} a_{i} \cdot X_{i j}-H A_{t}=0
$$

where,

$X_{i j} \begin{cases}1 & \text { if the } j \text {-th treatment is implemented for the } i \text {-th grid } \\ 0 & \text { otherwise }\end{cases}$
$r_{i j}: \quad$ The present value of revenue from the j-th treatment at the i-th grid
$c_{i j}: \quad \begin{aligned} & \text { The present value of cost from the } j \text {-th treatment at the } \\ & i \text {-th grid }\end{aligned}$
$a_{i}: \quad$ Area of the i-th gird
$R_{t}: \quad$ The present value of revenue at year t
C_{t} : The present value of cost at year t
$H A_{t}$: Harvest area at year t

Subject to (cont'd),

$$
\begin{aligned}
& \sum_{i=1}^{n o g} \sum_{j \in S t} a_{i} \cdot X_{i j}-S A_{t}=0 \\
& \sum_{i=1}^{n o g} \sum_{j \in E t} a_{i} \cdot X_{i j}-E A=0 \\
& E A \geq \gamma \cdot T A \\
& C_{t} \leq B D_{t} \\
& N P V_{t}-R_{t}+C_{t}=0 \\
& N P V_{t}-(1-\alpha) \cdot N P V_{t-1} \geq 0 \\
& N P V_{t}-(1+\beta) \cdot N P V_{t-1} \leq 0 \\
& 0 \leq X_{i j} \leq 1
\end{aligned}
$$

where (cont'd),
$S A_{t}$: Seedling area at year t
$E A$: Cultivating area at the end of the planning
$N P V_{t}$: The net present value at time t
$B D_{t}$: Budget at time t
$T A$: Total area of a ginseng farm
α : Allowable decreasing rate
β : Allowable increasing rate
γ : Lower bound for cultivating area at the end of the planning
not: Number of treatments
nog : Number of grids

Management Scenarios

Scenario \#		1	2	3	4
Objective	Max. NPV				
	Non-declining Yield	$\pm 10 \%$	$\pm 20 \%$	$\pm 10 \%$	$\pm 20 \%$
	Budget	$\leq \$ 100,000$	$\leq \$ 100,000$	$\leq \$ 200,000$	$\leq \$ 200,000$
	Ending area	≥ 8 ha	≥ 8 ha	≥ 8 ha	≥ 8 ha

- Solver: CPLEX

Net Profit

Scenario \#	1	2	3	4
Total profit (US\$)	$3,330,420$	$3,349,612$	$3,928,264$	$4,211,405$
Annual profit (US\$/yr)	176,521	186,463	207,703	210,570

Harvesting \& Seedling Area

Changes in Age Distribution

Scenario 1 (1) Profit fluctuation $\pm 10 \%$
 (2) Budget $\leq \$ 100,000$

Optimal Field Design (Present)

Optimal Field Design ($\mathrm{T}=5$ year)

Optimal Field Design ($\mathrm{T}=10$ year)

Optimal Field Design (T = 20 year)

Summary

- Optimal solutions for maximizing the profit considering
- site suitability for production
- sustained yield of mountain ginseng
- non-continuous cropping
- Optimal spatial-and-temporal field design for
- selecting specific locations of harvesting \& seedling sites
- managing age-distribution during production

Decision-making model for supporting the intensive mountain ginseng production

WFGRS 2015, April 27-28, 2015

