Biophysical responses in soil following intensive biomass removal

Adrian C. Gallo & Jeff Hatten

OSU Forest Engineering, Resources, and Management Department

Outline

Background

- Why focus on soil?
- Current state of research
- Study Design
 - Hypotheses we aim to address
- Results
 - Soil moisture,
 temperature, &
 respiration
- Future Work

Why focus on soil?

Long-Term Soil Productivity

- LTSP is regulated by
 - Soil organic matter
 - Porosity

Long-Term Soil Productivity

- LTSP is regulated by
 - Soil organic matter
 - Porosity

Long-Term Soil Productivity

- LTSP is regulated by
 - Soil organic matter
 - Porosity

How to **predict** forest productivity?

• Organic Matter

- Stem only, Whole tree,
 & Whole tree + Forest floor.
- Compaction
 - No compaction,
 Moderate compaction,
 & Heavy Compaction

Fig.2 - Shaded areas represents forests capable of producing 1.4 m^3 of wood, per hectare annually

Powers, R. 2006. Long-term soil Productivity: genesis of the concept and principles behind the program. Canadian Journal of Forest Research. 36:519-528.

How to **predict** forest productivity?

• Organic Matter

- Stem only, Whole tree
 & Whole tree + Forest floor.
- Compaction
 - No compaction,
 Moderate compaction,
 & Heavy Compaction

Fig 5. Quantity of fine fraction SOC stored at three depths before and after the OM_1 treatment. Vertical bars = one SE of the mean

Powers, R., A. Scott, F. Sanchez, R. Voldseth, D. Page-Dumerose, J. Elioff, and D. Stone. 2005. The North American long-term soil productivity experiment: findings from the first decade of research. Forest Ecology and Management. 220:31–50.

How to **predict** forest productivity?

• Organic Matter

- Stem only, Whole tree
 & Whole tree + Forest floor.
- Compaction
 - No compaction,
 Moderate compaction,
 & Heavy Compaction
- Soil C Paradox:
 - Rapid respiration of residual organic matter
 - Root decomposition

Fig 5. Quantity of fine fraction SOC stored at three depths before and after the OM_1 treatment. Vertical bars = one SE of the mean

Powers, R., A. Scott, F. Sanchez, R. Voldseth, D. Page-Dumerose, J. Elioff, and D. Stone. 2005. The North American long-term soil productivity experiment: findings from the first decade of research. Forest Ecology and Management. 220:31–50.

Hypotheses

 Direct solar radiation and direct rain on the soil
 surface will increase soil temperature and moisture throughout the profile.

This may promote a favorable environment for
microbial activity leading to increased
heterotrophic respiration.

Eventually, mineralizing more nutrients for plant uptake producing an apparent resilience in tree growth following intensive biomass removals.

Location & Timeline

Figure courtesy of Scott Holub – Weyerhaeuser

2012 – Sites identified and pre-harvest measurements taken

2013 – Treatments applied, post-harvest measurements, instrumented for weather data, soil water collections, gas analysis, and fenced for deer

2014 – Seedlings planted with initial tree measurements

2015 – Second year tree measurements, continuing soil observations

Graduate (never)?

2070 – Harvest and re-implement treatments

Photo taken summer 2013, courtesy of Scott Holub – Weyerhaeuser.

Methods: Instrumentation

Decagon

Soil temp/VWC @ 10, 20, 30, 100 cm Air temp and RH @ +15cm above mineral I per plot measured every hour

A, H, O = three different sources of CO2 Measured with an infrared gas analyzer (LiCOR 8100A) 3 per **plot** measured monthly

LYS

Zero-tension lysimeters *beneath* O-horizon 2 per **plot** collected after ~25cm rain 1/2 acre measurement plot

TRF

Throughfall collectors *above* the O-horizon I per **block** collected after ~25cm rain

Methods: Instrumentation

Decagon

Soil temp/VWC @ 10, 20, 30, 100 cm Air temp and RH @ +15cm above mineral I per plot measured every hour

A, H, O = three different sources of CO2 Measured with an infrared gas analyzer (LiCOR 8100A) 3 per **plot** measured monthly

LYS

TRF

Zero-tension lysimeters *beneath* O-horizon 2 per **plot** collected after ~25cm rain

Throughfall collectors *above* the O-horizon I per **block** collected after ~25cm rain

 $\frac{1}{2}$ acre measurement plot

Methods: Instrumentation

Treatment A

Treatment E

Untreated forest stand

Hypotheses

 Direct solar radiation and direct rain on the soil
 surface will increase soil temperature and moisture throughout the profile.

This may promote a favorable environment for
microbial activity leading to increased
heterotrophic respiration.

Eventually, mineralizing more nutrients for plant uptake producing an apparent resilience in tree growth following intensive biomass removals.

Hypotheses

Direct solar radiation and direct rain on the soil surface will increase soil temperature and moisture throughout the profile.

This may promote a favorable environment for
microbial activity leading to increased
heterotrophic respiration.

Eventually, mineralizing more nutrients for plant uptake producing an apparent resilience in tree growth following intensive biomass removals.

Daily Soil Respiration

Treatments	
Α	Bole only, No Comp.
В	Total Tree, No Comp.
С	Bole only, Comp.
D, F*	Total Tree, Comp.
E, G*	Total Tree+FF, Comp.

Daily Soil Respiration

Hypotheses

Direct solar radiation and direct rain on the soil surface will increase soil temperature and moisture throughout the profile.

This may promote a favorable environment for microbial activity leading to increased heterotrophic respiration.

Eventually, mineralizing more nutrients for plant uptake producing an apparent resilience in tree growth following intensive biomass removals.

What do we know so far?

- I. Less OM = higher soil temperatures
- 2. Less OM = higher soil moistures
 - OM removals > compaction
- 3. Questions over time are messy
 - Summer months
 have all the "action"

Ongoing Analysis

- I. A robust statistical data analysis of CO₂
- 2. H₂O Collections
- 3. Soil Nutrients
 - Stable Isotopes Greater microbial processing?
 - Biomarkers Source of the organic matter?

Adrian.gallo@oregonstate.edu

<u>Special Thanks</u> Scott Holub, Nathan Meehan, & Greg Johnson (Weyerhaeuser)

Kate Lajhta, Doug Maguire, Ariel Muldoon & Lisa Ganio

Yvan Alleau & Brett Morrissette (OSU Lab Technicians)

Kyle Hillis, Raven Chavez, Phil Aulie, & Emily Day (Student workers in the Forest Soils Lab)

NARA is led by Washington State University and is supported through the USDA Competitive Grant no. 2011-68005-30416

Methods: Treatment implementation

Figure courtesy of Scott Holub – Weyerhaeuser

Plot Layout

I acre treatment plot and $\frac{1}{2}$ acre measurement plot.

