Restoration of Riparian Areas Following the Removal of Cattle in the Northwestern Great Basin

Jonathan L. Batchelor¹ • William J. Ripple¹ • Todd M. Wilson² • Luke E. Painter³

Department of Forest Ecosystems and Society, Oregon State University
 US Forest Service, Pacific Northwest Research Station
 Department of Fisheries and Wildlife, Oregon State University

Oregon State

Preface

- Impacts of Grazing
- The Importance of Hart Mountain
- The Potential of Passive Restoration

Cattle Impacts

- One Million Square Kilometers Open to Grazing
 - 80% of BLM and 60% of US Forest Service
- Congregate in Riparian Areas
 - Denuding of Vegetation
 - Erosion of Stream Banks

Cattle Impacts

- Removes Habitat
- Exacerbates Effects of Climate Change

Objectives

- Historical Photos & Retakes
- Use Image Analysis to Assess the Amount of Change
- Assess the Accuracy of Image Analysis
- Compare Active Management to Passive Restoration

Importance of Hart Mountain

Southeast Oregon
Northern Basin and Range Ecoregion
Removal of Cattle in 1990
Limited Active Restoration Efforts

Methods Overview

- Photo Retakes
 - 64 photo pairs
- Field Measurements
 - Veg Transects
- Qualitative Visual
- Quantitative Digital Transects
- Accuracy Assessment

Qualitative Visual

- Visual Assessment of Each Photo Pair
- Seven Categories
 - willow cover
 - sagebrush cover
 - aspen recruitment
 - amount of bare soil
 - exposed channel
 - eroding banks
 - channel width

Quantitative Digital Transects

- Novel Approach of Inserting Digital Transects Into Each Photo Pair
- Each Pixel on the Transect was Assigned One of Seven Categories
 - bare soil
 - exposed channel
 - Willow
 - grasses/sedges/forbs (G/S/F)
 - Rushes
 - Sagebrush
 - "other"
- Raster Calculator to Determine What Each Pixel Changed to

Accuracy of 91% (kappa 83%)

Results: Qualitative Visual Assessment

Results: Quantitative Digital Line Intercept

Passive Vs Active Restoration

• No Significant Difference in Willow

- Sites Burned (n = 10) Vs. Not Burned (n = 14) (P = 0.67)
- Planted (n = 9) Vs. Not Planted (n = 15) (P = 0.42)
- No Significant Difference in Herbaceous Vegetation
 - Sites Burned (n = 30) Vs. Not Burned (n = 30) (P = 0.28)
- Significantly less Sagebrush in Burned Areas
 - Sites Burned (n = 7) Vs. Not Burned (n = 15) (P = 0.03)

Assumptions & Limitations

- Right Spot?
 - Location of the Retake Photograph
- Right Stuff?
 - Broad Ground Cover Categories
- Right Amount?
 - Foreground Shrubs Blocking Transect Location
- Right Inference?
 - Cattle or Climate

Land Use Vs Climate

Conclusion

Summer 1988

Legend

Conclusion

Simply removing cattle from areas may be all that is required to restore many degraded riparian areas in the American West.

Questions?

Restoration of Riparian Areas Following the Removal of Cattle in the Northwestern Great Basin

Jonathan L. Batchelor • William J. Ripple • Todd M. Wilson • Luke E. Painter

Batchelor, Jonathan L., et al. "Restoration of Riparian Areas Following the Removal of Cattle in the Northwestern Great Basin." *Environmental management* 55.4 (2015): 930-942.

Contact: Jonathan.Batchelor@OregonState.edu

Greater Hart-Sheldon Conservation Fund

