The Combustion of Large Downed Wood

Initial Impacts of Burn Intensity on Soil Nutrients and Ectomycorrhiza Communities of Ponderosa Pine Seedlings

Ariel D. Cowan, Jane E. Smith, Stephen A. Fitzgerald, Oregon State University Large Wildland Fires Conference, Missoula MT, May 20th 2014

Presentation Goals

Impacts of Fire

Intensity

- Temperature
- Duration

Severity

- Impact
- Product of intensity

Combustion of downed wood = High Intensity Burn

High intensity can create high severity impact on microbes and nutrients

Fire Temperature Threshold

Biological component threshold	Temperature (°C)	Reference Hare, 1961		
Plant roots	48			
Small mammals	49	Lyon et al., 1978		
Protein coagulation	60	Precht et al., 1973		
Fungi - wet soil	60	Dunn et al., 1985		
Seeds - wet soil	70	Martin et al., 1975		
Fungi – dry soil	80	Dunn et al., 1985		
Nitrosomonas	80	Dunn and DeBano,		
spp wet soil		1977		
Nitrosomonas	90	Dunn and DeBano,		
spp dry soil		1977		
Seeds - dry soil	90	Martin et al., 1975		

Source: Neary et al. 1999

Ectomycorrhizal Fungi (EMF) create symbiotic relationships with plants

EMF increase growth and survival of conifer seedlings

Ponderosa Pine – Important in Central Oregon Evolved with fire Dependent on EMF

Does burn intensity alter EMF recruitment on ponderosa pine seedlings?

1. Do soil nutrient contents differ among burn intensities?

- 2. Does early successional EMF species composition differ among burn intensities?
- 3. Do correlations exist among burn-related changes to soil nutrients and EMF species composition on ponderosa pine seedlings?

How might these changes impact ponderosa pine seedling establishment?

Lookout Mountain

- USFS Pringle Falls Experimental Forest
- La Pine, OR
- Deschutes National Forest
- *Pinus ponderosa*: Mixed age/Secondary
- Thinned and Masticated

HB = high intensity burn treatmentLB = low intensity burn treatmentUB = unburned control

HB treatment: MEGA-LOG

HB = high intensity burn treatmentLB = low intensity burn treatmentUB = unburned control

Temperature Recording

Glass-braided, Stainless Steel, and PVC thermocouple probes

HB

0, 5, 10, and 30 cm depths

LB

0 and 5 cm depths

HB micro-site BEFORE

AFTER

Soil Sampling

C, N, P, K, SOM, Ca, Mg, %MC, and pH

Four Months Later

Harvested 3 seedlings/micro-site

100 root tips selected from random squares in grid

- Root tips grouped by morphotype
- DNA extracted from 1-2 tips per group

- Polymerase Chain Reaction (PCR)
- Sanger sequencing
- Taxonomic names assigned to sequences
 - NCBI Database
- Statistical analysis comparing HB, LB, and UB

Preliminary Results

Soil Organic Matter (SOM)

Community Analysis

Species Composition:

Comparison	A-statistic	FDR-adjusted p-values		
HB vs LB	0.01	0.30		
HB vs UB	0.04	0.03		
LB vs UB	-0.01	0.45		

Species Richness and Diversity (averaged over micro-sites):

Treatment	N	Richness	Max	Min	SD	Simpson's Diversity
НВ	10	6.9	10	5	1.84	0.65
LB	10	8.6	17	4	3.63	0.74
UB	10	7.2	11	5	2.01	0.68
Species N=	64					

- 1. Do soil nutrient contents differ among burn intensities?
- Difference in SOM between UB and HB soils
- Greatest overlap between UB and LB soils

- 2. Does early successional EMF species composition differ among burn intensities?
- Difference between seedlings grown in UB and HB soils
- No difference in species richness and diversity
- 3. Do correlations exist among burn-related changes to soil nutrients and EMF communities on ponderosa pine seedlings?
- Species composition, pH, C, SOM, MC
- HB associated with ↓ C, SOM, ↑ pH

EMF Resilience

- Inoculum from nearby refuge
- Advantage of mixed severity fire
- Competition between species
- Analysis continues...

Acknowledgements

Jane Smith **Stephen Fitzgerald Carol Shestak** Matt Busse Debbie Dumroese **Tara Jennings Rich Cronn** Dan Luoma Joyce Eberhart Dan Mikowski **Bend and Redmond Fire Crews** Lisa Ganio Ariel Muldoon Liz McWilliams Joseph Cagle **Greg Brenner** Doni McKay Forest Mycology Lab **USFS PNW Research Station Mike Vernon**

Thank you!

Questions?

References:

Agee, J. K. 1998. The landscape ecology of western forest fire regimes. Northwest Science, **72**(17), 24-34.

Huff, M. H., Ottmar, R. D., Alvarado, E., Vihnanek, R. E., Lehmkuhl, J. F., Hessburg, P. F., and Everett, R. L. (1995) Historical and Current Forest Landscapes in Eastern Oregon and Washington: Part II, Linking Vegetation Characteristics to Potential Fire Behavior and Related Smoke Protection. USDA Forest Service, General Technical Report PNW.

Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140:227–238

Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. For. Ecol. Manage. 122, 51–71.

Neary, D.G., Ryan, K.C., and DeBano, L.F. 2005. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, 250 pp.

Tiessen H, Cueva E, Chacon P (1994) The role of soil organic matter in soil fertility. Nature 371:783–785